Multi-kernel Regression For Graph Signal Processing
نویسندگان
چکیده
We develop a multi-kernel based regression method for graph signal processing where the target signal is assumed to be smooth over a graph. In multi-kernel regression, an effective kernel function is expressed as a linear combination of many basis kernel functions. We estimate the linear weights to learn the effective kernel function by appropriate regularization based on graph smoothness. We show that the resulting optimization problem is shown to be convex and propose an accelerated projected gradient descent based solution. Simulation results using real-world graph signals show efficiency of the multi-kernel based approach over a standard kernel based approach.
منابع مشابه
Kernel Regression for Signals over Graphs
We propose kernel regression for signals over graphs. The optimal regression coefficients are learnt using a constraint that the target vector is a smooth signal over an underlying graph. The constraint is imposed using a graph-Laplacian based regularization. We discuss how the proposed kernel regression exhibits a smoothing effect, simultaneously achieving noise-reduction and graph-smoothness....
متن کاملComposite Kernel Optimization in Semi-Supervised Metric
Machine-learning solutions to classification, clustering and matching problems critically depend on the adopted metric, which in the past was selected heuristically. In the last decade, it has been demonstrated that an appropriate metric can be learnt from data, resulting in superior performance as compared with traditional metrics. This has recently stimulated a considerable interest in the to...
متن کاملEfficiency of Target Location Scenarios in the Multi-Transmitter Multi-Receiver Passive Radar
Multi-transmitter multi-receiver passive radar, which locates target in the surveillance area by the reflected signals of the available opportunistic transmitter from the target, is of interest in many applications. In this paper, we investigate different signal processing scenarios in multi-transmitter multi-receiver passive radar. These scenarios include decentralized processing of reference ...
متن کاملFast multi-view segment graph kernel for object classification
Object classification is an important issue in multimedia information retrieval. Usually, we can use images from multiple views (or multi-view images) to describe an object for classification. However, two issues remain unsolved. First, exploiting the spatial relations of local features from different view images for object classification. Second, accelerating the multi-view object classificati...
متن کاملImage Denoising: a Multi-scale Framework Using Hybrid Graph Laplacian Regularization
in this paper main aim is to focus on to remove impulse noise from corrupted image. Here present a method for removing noise from digital images corrupted with additive, multiplicative, and mixed noise. Here used hybrid graph Laplacian regularized regression to perform progressive image recovery using unified framework. by using laplacian pyramid here build multi-scale representation of input i...
متن کامل